Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2264428

ABSTRACT

One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time. We developed a hybrid machine-learning epidemiological model to forecast the infection trends, aggregated the socio-economic costs from the literature and expert knowledge, and used a multi-objective optimization algorithm to find and evaluate various intervention plans. The framework is modular and easily adjustable to a real-world situation, it is trained and tested on data collected from almost all countries in the world, and its proposed intervention plans generally outperform those used in real life in terms of both the number of infections and intervention costs.

2.
Front Public Health ; 11: 1073581, 2023.
Article in English | MEDLINE | ID: covidwho-2264429

ABSTRACT

One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time. We developed a hybrid machine-learning epidemiological model to forecast the infection trends, aggregated the socio-economic costs from the literature and expert knowledge, and used a multi-objective optimization algorithm to find and evaluate various intervention plans. The framework is modular and easily adjustable to a real-world situation, it is trained and tested on data collected from almost all countries in the world, and its proposed intervention plans generally outperform those used in real life in terms of both the number of infections and intervention costs.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Algorithms , Machine Learning
3.
Int J Environ Res Public Health ; 18(13)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1282509

ABSTRACT

The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the early phases of the infection when countermeasures had not yet taken place. We collected the most diverse dataset of potentially relevant factors and infection metrics to date for this task. Using it, we show the importance of different factors and factor categories as determined by both statistical methods and machine learning (ML) feature selection (FS) approaches. Factors related to culture (e.g., individualism, openness), development, and travel proved the most important. A more thorough factor analysis was then made using a novel rule discovery algorithm. We also show how interconnected these factors are and caution against relying on ML analysis in isolation. Importantly, we explore potential pitfalls found in the methodology of similar work and demonstrate their impact on COVID-19 data analysis. Our best models using the decision tree classifier can predict the infection class with roughly 80% accuracy.


Subject(s)
COVID-19 , Algorithms , Humans , Machine Learning , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL